Search results for "NONCOMMUTATIVE GEOMETRY"

showing 10 items of 36 documents

Exact treatment of linear difference equations with noncommutative coefficients

2007

The exact solution of a Cauchy problem related to a linear second-order difference equation with constant noncommutative coefficients is reported.

Cauchy problemRecurrence relationTranscendental equationDifferential equationGeneral MathematicsGeneral EngineeringFOS: Physical sciencesMathematical Physics (math-ph)quantum theoryNoncommutative geometryPhysics::History of PhysicsFunctional equationApplied mathematicsifference and functional equationConstant (mathematics)Mathematical PhysicsLinear equationMathematics
researchProduct

Exact treatment of operator difference equations with nonconstant and noncommutative coefficients

2013

We study a homogeneous linear second-order difference equation with nonconstant and noncommuting operator coefficients in a vector space. We build its exact resolutive formula consisting of the explicit noniterative expression of a generic term of the unknown sequence of vectors. Some nontrivial applications are reported in order to show the usefulness and the broad applicability of the result.

Cauchy problemSequenceDifferential equationGeneral MathematicsOperator (physics)Mathematical analysisGeneral EngineeringExpression (computer science)Term (logic)Noncommutative geometrySettore FIS/03 - Fisica Della MateriaCauchy problem Noncommuting operators Operator difference equationsMathematicsVector space
researchProduct

The Argument Dependency Model

2015

This chapter summarizes the architecture of the extended Argument Dependency Model (eADM), a model of language comprehension that aspires toward neurobiological plausibility. It combines design principles from neurobiology with insights on cross-linguistic diversity. Like other current models, the eADM posits that auditory language processing proceeds along two distinct streams in the brain emanating from auditory cortex: the antero-ventral and postero-dorsal streams. Both streams are organized hierarchically and information processing takes place in a cascaded fashion. Each stream has functionally unified computational properties congruent with its role in primate audition. While the dorsa…

Cognitive sciencehierarchical processingDependency (UML)business.industryComputer scienceInformation processingcross-linguistic diversityAuditory cortexcomputer.software_genreNoncommutative geometryComprehensionRange (mathematics)dorsal streamventral streamArtificial intelligenceArgument (linguistics)businesscomputerCommutative propertyNatural language processinglanguage comprehension
researchProduct

A natural and rigid model of quantum groups

1992

We introduce a natural (Frechet-Hopf) algebra A containing all generic Jimbo algebras U t (sl(2)) (as dense subalgebras). The Hopf structures on A extend (in a continuous way) the Hopf structures of generic U t (sl(2)). The Universal R-matrices converge in A\(\hat \otimes \)A. Using the (topological) dual of A, we recover the formalism of functions of noncommutative arguments. In addition, we show that all these Hopf structures on A are isomorphic (as bialgebras), and rigid in the category of bialgebras.

Discrete mathematicsFormalism (philosophy of mathematics)Pure mathematicsRigid modelQuantum groupMathematics::Quantum AlgebraMathematics::Rings and AlgebrasStatistical and Nonlinear PhysicsHopf algebraNoncommutative geometryQuantumMathematical PhysicsMathematicsLetters in Mathematical Physics
researchProduct

Quantum extensions of semigroups generated by Bessel processes

1996

We construct a quantum extension of the Markov semigroup of the classical Bessel process of orderv≥1 to the noncommutative von Neumann algebra s(L2(0, +∞)) of bounded operators onL2(0, +∞).

Discrete mathematicsPure mathematicsBessel processMathematics::Operator AlgebrasSemigroupGeneral MathematicsNoncommutative geometryQuantum dynamical semigroupsymbols.namesakeQuantum probabilityVon Neumann algebraBounded functionsymbolsBessel functionMathematicsMathematical Notes
researchProduct

The dyon charge in noncommutative gauge theories

2007

We present an explicit classical dyon solution for the noncommutative version of the Yang-Mills-Higgs model (in the Prasad-Sommerfield limit) with a tehta term. We show that the relation between classical electric and magnetic charges also holds in noncommutative space. Extending the Noether approach to the case of a noncommutative gauge theory, we analyze the effect of CP violation at the quantum level, induced both by the theta term and by noncommutativity and we prove that the Witten effect formula for the dyon charge remains the same as in ordinary space.

High Energy Physics - TheoryComputer Science::Machine LearningCiencias FísicasGeneral Physics and AstronomyFOS: Physical sciencesSpace (mathematics)Computer Science::Digital LibrariesStatistics::Machine Learningsymbols.namesakeGeneral Relativity and Quantum CosmologyHigh Energy Physics::TheoryMathematics::Quantum AlgebraGauge theoryLimit (mathematics)Ciencias ExactasMathematical physicsPhysicsnoncommutative gauge theoryMathematics::Operator AlgebrasHigh Energy Physics::PhenomenologyFísicaCharge (physics)Noncommutative geometryDyonHigh Energy Physics - Theory (hep-th)Computer Science::Mathematical SoftwaresymbolsCP violationNoether's theorem
researchProduct

Hopf algebras, renormalization and noncommutative geometry

1998

We explore the relation between the Hopf algebra associated to the renormalization of QFT and the Hopf algebra associated to the NCG computations of transverse index theory for foliations.

High Energy Physics - TheoryPhysicsMathematics::Rings and AlgebrasMathematics - Operator AlgebrasFOS: Physical sciencesStatistical and Nonlinear PhysicsHopf algebraNoncommutative geometryRenormalizationHigh Energy Physics - Theory (hep-th)Mathematics::Quantum AlgebraMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)Operator Algebras (math.OA)Mathematical PhysicsMathematical physics
researchProduct

Supersymmetry in non commutative superspaces

2003

Non commutative superspaces can be introduced as the Moyal-Weyl quantization of a Poisson bracket for classical superfields. Different deformations are studied corresponding to constant background fields in string theory. Supersymmetric and non supersymmetric deformations can be defined, depending on the differential operators used to define the Poisson bracket. Some examples of deformed, 4 dimensional lagrangians are given. For extended superspace (N>1), some new deformations can be defined, with no analogue in the N=1 case.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsFOS: Physical sciencesFísicaSupersymmetrySuperspaceString theoryDifferential operatorNoncommutative geometryPoisson bracketQuantization (physics)High Energy Physics::TheoryNonlinear Sciences::Exactly Solvable and Integrable SystemsHigh Energy Physics - Theory (hep-th)Commutative propertyComputer Science::DatabasesParticle Physics - TheoryMathematical physics
researchProduct

Noncommutative space and the low-energy physics of quasicrystals

2008

We prove that the effective low-energy, nonlinear Schroedinger equation for a particle in the presence of a quasiperiodic potential is the potential-free, nonlinear Schroedinger equation on noncommutative space. Thus quasiperiodicity of the potential can be traded for space noncommutativity when describing the envelope wave of the initial quasiperiodic wave.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsQuasicrystalFOS: Physical sciencesAstronomy and AstrophysicsMathematical Physics (math-ph)Space (mathematics)Noncommutative geometryAtomic and Molecular Physics and OpticsNonlinear Sciences::Chaotic DynamicsQuasiperiodicitysymbols.namesakeLow energyHigh Energy Physics - Theory (hep-th)Quasiperiodic functionsymbolsNonlinear Schrödinger equationMathematical PhysicsMathematical physicsEnvelope (waves)
researchProduct

Supersymmetry and Noncommutative Geometry

1996

The purpose of this article is to apply the concept of the spectral triple, the starting point for the analysis of noncommutative spaces in the sense of A.~Connes, to the case where the algebra $\cA$ contains both bosonic and fermionic degrees of freedom. The operator $\cD$ of the spectral triple under consideration is the square root of the Dirac operator und thus the forms of the generalized differential algebra constructed out of the spectral triple are in a representation of the Lorentz group with integer spin if the form degree is even and they are in a representation with half-integer spin if the form degree is odd. However, we find that the 2-forms, obtained by squaring the connectio…

High Energy Physics - TheoryPhysicsOperator (physics)General Physics and AstronomyFOS: Physical sciencesSupersymmetryDirac operatorNoncommutative geometryLorentz groupsymbols.namesakeHigh Energy Physics - Theory (hep-th)symbolsGeometry and TopologyMultipletSpectral tripleMathematical PhysicsSupersymmetry algebraMathematical physics
researchProduct