Search results for "NONCOMMUTATIVE GEOMETRY"
showing 10 items of 36 documents
Exact treatment of linear difference equations with noncommutative coefficients
2007
The exact solution of a Cauchy problem related to a linear second-order difference equation with constant noncommutative coefficients is reported.
Exact treatment of operator difference equations with nonconstant and noncommutative coefficients
2013
We study a homogeneous linear second-order difference equation with nonconstant and noncommuting operator coefficients in a vector space. We build its exact resolutive formula consisting of the explicit noniterative expression of a generic term of the unknown sequence of vectors. Some nontrivial applications are reported in order to show the usefulness and the broad applicability of the result.
The Argument Dependency Model
2015
This chapter summarizes the architecture of the extended Argument Dependency Model (eADM), a model of language comprehension that aspires toward neurobiological plausibility. It combines design principles from neurobiology with insights on cross-linguistic diversity. Like other current models, the eADM posits that auditory language processing proceeds along two distinct streams in the brain emanating from auditory cortex: the antero-ventral and postero-dorsal streams. Both streams are organized hierarchically and information processing takes place in a cascaded fashion. Each stream has functionally unified computational properties congruent with its role in primate audition. While the dorsa…
A natural and rigid model of quantum groups
1992
We introduce a natural (Frechet-Hopf) algebra A containing all generic Jimbo algebras U t (sl(2)) (as dense subalgebras). The Hopf structures on A extend (in a continuous way) the Hopf structures of generic U t (sl(2)). The Universal R-matrices converge in A\(\hat \otimes \)A. Using the (topological) dual of A, we recover the formalism of functions of noncommutative arguments. In addition, we show that all these Hopf structures on A are isomorphic (as bialgebras), and rigid in the category of bialgebras.
Quantum extensions of semigroups generated by Bessel processes
1996
We construct a quantum extension of the Markov semigroup of the classical Bessel process of orderv≥1 to the noncommutative von Neumann algebra s(L2(0, +∞)) of bounded operators onL2(0, +∞).
The dyon charge in noncommutative gauge theories
2007
We present an explicit classical dyon solution for the noncommutative version of the Yang-Mills-Higgs model (in the Prasad-Sommerfield limit) with a tehta term. We show that the relation between classical electric and magnetic charges also holds in noncommutative space. Extending the Noether approach to the case of a noncommutative gauge theory, we analyze the effect of CP violation at the quantum level, induced both by the theta term and by noncommutativity and we prove that the Witten effect formula for the dyon charge remains the same as in ordinary space.
Hopf algebras, renormalization and noncommutative geometry
1998
We explore the relation between the Hopf algebra associated to the renormalization of QFT and the Hopf algebra associated to the NCG computations of transverse index theory for foliations.
Supersymmetry in non commutative superspaces
2003
Non commutative superspaces can be introduced as the Moyal-Weyl quantization of a Poisson bracket for classical superfields. Different deformations are studied corresponding to constant background fields in string theory. Supersymmetric and non supersymmetric deformations can be defined, depending on the differential operators used to define the Poisson bracket. Some examples of deformed, 4 dimensional lagrangians are given. For extended superspace (N>1), some new deformations can be defined, with no analogue in the N=1 case.
Noncommutative space and the low-energy physics of quasicrystals
2008
We prove that the effective low-energy, nonlinear Schroedinger equation for a particle in the presence of a quasiperiodic potential is the potential-free, nonlinear Schroedinger equation on noncommutative space. Thus quasiperiodicity of the potential can be traded for space noncommutativity when describing the envelope wave of the initial quasiperiodic wave.
Supersymmetry and Noncommutative Geometry
1996
The purpose of this article is to apply the concept of the spectral triple, the starting point for the analysis of noncommutative spaces in the sense of A.~Connes, to the case where the algebra $\cA$ contains both bosonic and fermionic degrees of freedom. The operator $\cD$ of the spectral triple under consideration is the square root of the Dirac operator und thus the forms of the generalized differential algebra constructed out of the spectral triple are in a representation of the Lorentz group with integer spin if the form degree is even and they are in a representation with half-integer spin if the form degree is odd. However, we find that the 2-forms, obtained by squaring the connectio…